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Background 

RFIDs have almost become ubiquitous such that one can find RFID readers installed in almost any 

location.  These RFIDs follow a well-established protocol, Fig. 1, that is built on the fact that the RFID 

tags perform very simple processing that require very little power.  Thus, the RFID tags do not have to 

perform any complex storage of energy and it is assumed it can perform all of the necessary computations 

with the power received from the reader. 

 
Figure 1: Example of communication between one reader and two tags 

 

The above image shows the RFID protocol.  Typically a Select command is issued to begin inventorying 

the RFIDs.  Following the Select comes a Query command from the reader that contains the number of 

slots tags can respond in.  Tags will randomly choose a slot to respond in. QueryRepeats are sent to 

decrement each tags slot count.  When a tag‟s slot number decrements to 0, it sends an RN16 reply to the 

reader to notify that it wants to send its ID.  The reader responds with an ACK containing the same RN16, 

and finally the tag sends its OID.  There are other complications that could arise, such as collisions or lost 

packets, but the above is the general protocol and explaining the special cases is beyond the scope of this 

paper. 

 

Computational RFIDs (CRFIDs) take advantage of existing RFID architecture but do much more 

processing.  Instead of a small CPU as in the RFID case, it is has fairly powerful one to do computation. 

Furthermore, this computation could be done “offline,” that is not part of the normal RFID-Reader 

communication, often called its “workload”. In order to power such a CPU, a CRFID has an onboard 

capacitor to store energy and once enough is stored, the CRFID turns ON and burns energy quickly when 

performing tasks – much more quickly than an RFID. In this paper, we use the approximation of about 

0.9mW consumption.   Thus the problem arises that a CRFID could burn up its energy before finishing its 

communication with a reader. 



 

Applications of CRFIDs range from just taking sensor readings to performing authentication for Human 

Implantable devices [1]. 

 

Problem 

The general assumption that an RFID tag has enough power once it is “Awake” and can always 

respond/process messages to/from the reader is no longer valid in CRFIDs.  A CRFID can run low on 

power and go to sleep in the middle of any step. If the tag chooses a slot count too far out, it will burn out 

before it can respond, when it might have succeeded with a smaller slot number. Furthermore, certain tags 

will have more power than others depending on their distances from the reader, so they can handle larger 

slot counts. 

 

Currently, RFID simulators model the normal RFID setup with the “unlimited” power assumption once 

on.  However, this does not work for CRFIDs. Therefore, to simulate CRFIDs and to see the effects of a 

high energy consuming CPU, a simulator needs to be extended to model the CRFID, taking into account 

shutting down due to energy burn out. Furthermore, we need to see the effect of using the random slot 

count choice and investigate how it compares to a variation on the protocol that takes into account the 

current energy stored to generate a slot number. 

 

In the real usage of a CRFID, there is the “workload” that it performs upon start-up. This is typically a 

static amount every time the tag wakes up and in the project we are not interested in this fixed amount, 

but rather the effects of the power usage in the MAC Protocol. Therefore, we do not have a workload in 

this iteration of the simulator. 

 

In the project we will be using the WISP as the CRFID that we will model. 

 

We will not make any adjustments to the Reader‟s behavior because the common setup in the real world 

today is to use the currently deployed RFID readers and add in CRFIDs with no change to the reader. 

 

Approach 

In order to evaluate the effectiveness of a power heuristic for CRFIDs, we adapted an RFID simulation 

[2] to a CRFID simulation and measured the performance of the tags when they were treated as: Normal 

RFIDs, CRFIDs without any power heuristics, and CRFIDs with a heuristic.  We will first discuss the 

changes that had to be made to the RFID simulation to make it into a CRFID simulation and then we will 

discuss the power heuristics that were added to simulation to improve performance. 

 

First, we picked up the RFID simulation and had to get it to run.  Upon getting the simulation to run 

correctly, we needed to begin by introducing a model for the tag‟s capacitor.  Basically, the capacitor 

object keeps track of the number of Joules stored up by the tag.  Using measurements provided by 

Michael Buettner, the capacitor has a maximum of 5Volts. As long as the tag is getting a signal from the 

reader, the tag accumulates energy up to the maximum.  Once the tag performs tasks, such as processing a 

message or transmitting it will deduct from the capacitor.  

 

As part of the capacitor model, a CRFID also has certain energy levels for when it is “ON” and “OFF”.  

The following is a summary of its behavior: 

1. The tag begins with no energy 

2. When the tag hits 2V, the tag is considered “ON” and can perform tasks 

3. When the tag drops to 1.5V, the tag goes to sleep in “OFF” mode and drops all tasks 

4. Repeat 2 and 3 

This behavior was added into the Tag model so that when performing any task, we first check if we are 

“ON” or “OFF” to decide if we drop a task (because there is not enough energy) or we let the task run. 



 

When the capacitor and tag states were modeled correctly, we needed to model the addition and 

subtraction of energy appropriately. In order to make the project possible within the quarter, we made the 

following approximations: 

 Between signals from the reader and tag, the power level is constant (no attenuation) 

 The energy in the capacitor grows and shrinks linearly 

The simulator provided a Power Signal which was not a message but a way for the tag to record the 

current power level we are getting from the reader.  These signals, in addition to actual messages, are 

used to perform the accumulation of energy in between messages and transmits.  This is done by simply 

taking the power level indicated by the signal and using that power over the duration from the last event 

(transmit, message, or power signal).  Next, when a real message is being processed, we accumulate 

power as well as use it up as the message is processed. Therefore, we still add in the energy, but if the 

energy usage drops us to 1.5V, we drop the message (even if we are midway through the process). A 

similar thing is done for transmits. 

 

Next, a CRFID also will turn OFF upon sending its OID and wait until it is back up to 2V before 

participating in query rounds again.  This was added into the model by modifying the possible Tag States.  

When a tag sends off its OID, it is in the Acknowledged state and stays there until another query or query 

repeat comes in. At this point, instead of performing a read or generating another slot number to 

participate in another round, it goes to the Unpowered state and recharges back up to 2V. 

 

Once we had a simulator modeling a CRFID, we examined its performance against normal RFIDs to 

show that there was, indeed, a problem with CRFID performance.  We attempted to determine an optimal 

performance for CRFIDs, but this turned out to be a nontrivial problem that we leave for future research. 

What makes this difficult is that a tag could only best schedule itself into a slot if it could actually keep 

track of the energy of all of the tags as well as everyone‟s accumulation rate (not just its own).   After 

this, it is very difficult to determine whether it might be better for a tag to not participate in a query round 

even though you have energy to do so (ex. the tag estimates it might collide with another tag), or if a tag 

should just abandon the current round in order to choose a better (ex. non-colliding) position for the next 

round. To add to the complication, the schedule might be different depending on the layout and number of 

tags. 

 

We primarily tried to improve the performance of CRFIDs (more about what „performance‟ means in the 

results section) by making simple modifications to the slot number algorithm. We did this in two ways. 

The first was to take the amount of energy available in a capacitor to process tasks and compute based on 

that the number of QueryRepeats the tag can process before it will not have enough energy to complete 

the “transaction” (send OID). This is a conservative estimate, as we are assuming no future accumulated 

power.  We choose a random slot number no more that this maximum number of QueryRepeats.  If we do 

not have enough energy for even one QueryRepeat, we do not participate in the round. We called this 

SlotPredict.  

 

The second algorithm tries to keep collisions down and not be overly pessimistic about the number of 

QueryRepeats that can be handled by spreading the tags across a larger slot range, however it does so 

probabilistically. The algorithm first divides up the entire slot range down the middle – the higher slots 

and lower slots. Then, based on the number of QueryRepeats a tag believes it can handle, it 

probabilistically chooses a random slot from either the upper range or the lower range.  We performed 

two variations of this, one where the higher the QueryRepeat count, the more likely the tag will be in the 

top, and vice versa.  The former is to give the low energy tags a better chance to send before running out 

of energy – we call this SlotPartition. The latter is based the observation that sometimes choosing farther 

slots actually give a tag time to gain more energy as other tags are transmitting – we call this 

ReverseSlotPartition. 



 

There were also certain features not implemented in the simulator that we had to adapt to. For example, to 

get some meaningful results, we wanted the reader to continue to issue queries and have the tags respond 

even after all tags have been inventoried – the simulation used to shut down after each tag responded just 

once. Typically using session one would do this, but this did not seem to work, so instead we had to 

adjust the tags to always respond and the reader to never shut down. There were many other tweaks made 

to bend the simulator to our model (many thanks to Michael for helping us understand what could and 

could not be removed/modified). 

 

Results 

In this section we will present our results. To measure performance, we first see the success rate of tags 

(given by the formula: |OIDs sent|/|RN16s sent|) as well as the overall throughput of OIDs sent through 

the system (given by the formula: # OIDs sent/second). We vary the distance a tag is from the reader as 

well as the number of tags and their arrangements. Each experiment was conducted over 10 simulated 

seconds. 

 

First, as a proof of concept that, indeed, we do have major performance degradation when the battery is 

introduced; as shown in Figure 2, which shows the performance of a cluster of 36 tags at various 

distances, we see a large gap in throughput and a drop in success rate when comparing RFIDs against a 

basic CRFID. 

 

At the 2 to 3 meters, we begin to see that processing messages costs more than the amount of energy 

accumulated from the reader.  At 5 to 6 meters, we see that the accumulation of energy so low that many 

tags are not even able to participate in rounds and if they can participate, they can only handle a small 

number of slots.  

 

 
Figure 2:  Throughput (left) and success rate(right) of 36 tags clustered together at various distances 

 

Note that we also tested with clusters of 4 tags, 6 tags, and 72 tags, which had very similar graphs. (An 

interesting note is that with fewer tags, the drops are less severe because the number of QueryRepeats that 

need to be handled are very small.) 

 

We looked at the collisions and they are actually lower than regular RFIDs because of the lack of 

participation.  Therefore, we deemed the drop in success rate to be the main problem and attempt to 

improve this metric using SlotPredict.  Figure 3 shows that we see a significant improvement in 

throughput and success rate when there are only a few tags.  However, once we increase the tag number, 

there is actually no performance improvement, or worse performance.  The problem is that we introduced 

collisions, shown in Figure 4. 



 
Figure 3: Throughput (left) and success rate (right) of 4 tags clustered at various distances 

 

 
Figure 4: Collisions per second of 72 tags clustered at various distances 

 

To combat the high collisions and still try to improve the success rate, we try the SlotPartition algorithm, 

the idea being, with less energy we still choose the lower range, but spread it out a little and occasionally 

choose large slots. For large number of tags, this had the desired effect of dropping collisions, but failed 

to raise the success rate, as can be seen in Figure 5.  The problem was that once tags have little energy, 

waiting any longer than what they can handle is essentially a failure. We note that there are some 

improvements when the tags were farther away since low energy tags are pushed to the earlier slots and 

have a higher likelihood of succeeding, but the improvement is very minimal since most tags are still in 

slots that are too far out. 

 

 
Figure 5: Throughput (left) and success rate (right) of 36 tags clustered at various distances 

 



To see if RevSlotPartition indeed give low energy tags more time to gather energy by taking advantage of 

transmitting high energy tags first, we measured its performance.  Figure 6 shows that we are not able to 

see advantages with this algorithm; we continue to see low throughput and even though the success rate 

improve for closer tags, the farther tags have no change and the overall success rate is still poor.  The 

problem was that the high energy tags operated as normal, but the time gap in between the high energy 

tags and the low energy tags was too great for the low energy tags to take advantage of the extra time to 

gather energy – the extra energy was drained away during this inactive period. 

 

 
Figure 6: Throughput (left) and success rate (right)of 72 tags clustered at various distances 

 

One more interesting thing we discovered in our testing was that distance was a key factor in a tag‟s 

ability to succeed.  In Figure 7, we spread 36 tags across the space with 4 tags at every meter.  This is 

opposed to clustering all of the tags at one single distance, as we have been doing previously. As you can 

see in the figure, all of the tags 1 meter away have a very high success rate, but all of the tags from 2 

meters and farther away have a very low success rate.  We called this phenomenon the curse of distance. 

 

 
Figure 7: Throughput of all 36 tags where 4 tags are placed at each distance from 1meter to 9meters 

 

Learnings 

The primary learnings that the authors attained throughout this project was an understanding of RFIDs 

and CRFIDs.  Both authors began this project with virtually no knowledge about RFIDs or CRFIDs and 

chose to work on this project in order to gain some understanding about the technology, with the hope of 

being to use the knowledge and work with RFIDs or CRFIDs in the future.  Concerning this goal of 

learning more about the technology, we have to give a warm thanks to Michael Buettner who advised us 

at least one day a week, guiding us with our project and our understanding step by step.     

 



We also learned much about how RFIDs are simulated.  The library we adopted included actual libraries 

used in real systems, such as the LLRP library to communicate with the readers. But, in learning through 

this simulator, we learned there is a major risk with adopting research code.  The code was broken at first, 

unable to even compile.  Furthermore, there were many configurations and files that were undocumented 

and many hours were spent trying to interpret what the simulation designers meant.  Furthermore, many 

of expected behaviors of the system were not even implemented, partially broken, or implemented in a 

very unintuitive manner. 

 

Through reading about (C)RFIDs and discussing with others about how they operate, we also learned the 

various uses of CRFIDs. For example, using it to get various sensor readings in a building or tracking 

objects. 

 

Regarding the project results, themselves, we learned that there is, indeed, a major problem with basic 

CRFIDs using the RFID protocol, primarily due to the poor choices by tags of when to transmit.  This 

leads us to believe that adding a power heuristic to the standard RFID protocol when using CRFID tags 

benefits the operation of CRFID tags significantly and should be evaluated with real devices (as opposed 

to a simulation) for use in the real world.  The methods that showed the greatest promise were to have 

low-energy tags purposefully choose lower slots improve their success rates, but this is not to say that we 

cannot take some calculated advantage of moving high-energy tags to earlier slots.  All of these methods 

were really a balance between three main tradeoffs:  improving collisions per second, improving success 

rate, and increasing the aggressiveness of tag participation.  For example, if you wanted high participation 

with a high per tag success rate, this comes at the cost of more collisions and a lower overall success rate 

when using more tags.  Lastly, we learned that the environment also has to be taken into account, as it can 

have a severe impact on the protocol and one‟s ability to find an ideal protocol.  For example, the 

performance of each of the algorithms implemented in this project was impacted by the curse of distance 

and the number of tags (ex. SlotPredict works pretty well with a low number of tags, but not a high 

number). 

 

Future Directions 

One of the future directions is to model the capacitor more accurately. In reality, accumulation actually 

begins super-linear and then slows down as it approaches the max.  Similarly, when discharging, it drops 

faster than linear than slows down as it approaches zero. We believe that the simplification made in this 

project should not affect the results much, but without an actual implementation it is hard to tell.  

 

In this project, we tested three possible adjustments to the protocol and they showed that making these 

types of changes can definitely help avoid unnecessary transmits and increase success rate. However, by 

doing so could cause the overall throughput to drop. With some careful calibrations and possibly a 

different way to even choose the slot count, we believe we can get performance much closer to the normal 

RFID case. For example, some things to also consider include the energy accumulation rate where a next 

step with SlotPredict is to have it factor the accumulation rate into its slot calculation.  Another thing to 

consider is that instead of a random number generator, we could use a pseudo random number which can 

help avoid collisions between tags the same distance away. 

 

With some more simulation, a natural follow-up step is to take one of the successful protocols and 

implement it into real CRFIDs and see how they perform in reality.  In simulation, things could look just 

fine, but in reality there are many more factors that could affect the performance, such as noise, 

interference of objects, etc. 

 

One piece we did not consider was what we can do with the reader.  Currently, in most setups, people are 

adding CRFIDs to existing readers (readers are very expensive, so replacing is undesirable), but there 

could be a time when new ones will be ushered in.  Research into how readers could aid in increasing the 



efficiency of the system would beneficial.  The readers have much more power to use for computation 

than tags. 

 

Lastly, there is much to be said about the actual simulator. We had to make many “hacks” to bend the 

system to perform the way we expected.  This simulator needs to be cleaned up much more before it can 

be really used well for simulating a CRFID setup and provide very deep insights into the behavior and 

mimic reality as close as possible. 
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